Пятница, 26.04.2024, 13:31
Приветствую Вас Гость | RSS

Translate this site to:

Главная Регистрация Вход
ВХОД

Меню сайта

Мини-чат

Разные ФОТО

ПОИСК в QRZ.RU
QRZ.RU callsign lookup:
Callsign lookups provided by qrz.ru

ПОИСК в QRZ.COM
QRZ.COM callsign lookup:

Callsign lookups provided by qrz.com

ПОГОДА



SOLAR

VHF Aurora :Status
144 MHz Es in EU :Status
70 MHz Es in EU :Status
50 MHz Es in EU :Status
144 MHz Es in NA :Status
Solar X-rays:Status
Geomagnetic Field:Status
Estimated Kp:Status
MUF timeline:Status
Meteor Activity:Status
Magnetic storm: Status
Rigref-Solar:Status

VHF IRC Chat
Для работы в IRC Chat необходима "Авторизация" на сайте VHFDX.RU (Вводим имя пароль. Если не зарегистрированы, то можно ввести UN9FWW и такой же пароль)
Авторизация


После авторизации жмем на кнопку "Connect" IRC Chat и работаем на УКВ с коллегами)
IRC Chat

Форум УКВ FORUM VHFDX RU

Slack Chat SLACK CHAT

Устанавливаем клиентское приложение Slack с сайта Slack.com и регистрируемся в нем. Для подключения к чат-комнатам нужно написать короткое сообщение по email: mike.chirkov@gmail.com и указать Ваш позывной и email. Вас сразу добавят в список доступа к УКВ-чату. Можно установить чат-клиент не только на компьютер, но и на мобильный телефон или планшет. В чате есть распределение по всем диапазонам



WEB SDR ALTAY
WEB SDR ALTAY
1. SDR 28, 144 mHz

2. SDR Казахстанский приемник на сайте Flora Fauna of Kazakhstan Путешествующих радиолюбителей. В меню выбираем: WEB SDR Kaz - Аксуек

Главная » 2011 » Февраль » 18 » Заземление.
02:11
Заземление.

В каталог файлов выложил программу расчета заземления для дома, дачи  и прочих сооружений.

Кто заинтересован в надежном заземлении, заземлении компьютерной и прочей техники читайте данную статью:

Заземление компьютерной техники

Автор: Воробьев Александр
Источник: LAN

Заземление компьютерной техники, телекоммуникационного оборудования и источников бесперебойного питания служит для достижения так называемой электромагнитной совместимости (ЭМС) - обеспечения работоспособности оборудования как при привносимых извне, так и создаваемых самим оборудованием электромагнитных помехах. Другой, наиболее важной функцией заземления является обеспечение электробезопасности персонала, работающего с инфокоммуникационным оборудованием.
В зависимости от поставленных целей, а также от национальных и международных стандартов применяемые схемы могут различаться в электроустановках с разным напряжением переменного и постоянного тока. Мы рассмотрим наиболее массовый случай заземления отдельных компьютеров и рабочих станций локальной сети, активного сетевого оборудования, цифровых учрежденческих АТС (УАТС), т. е. такого оборудования, которое включают в розетку переменного тока напряжением 220 В. На практике можно встретить две крайности: либо игнорирование заземления и использование обычных бытовых розеток (или заземление на трубы и конструкции), либо, наоборот, чрезмерные требования по созданию "чистой" земли. В обоих случаях нормы электромагнитной совместимости и электробезопасности не выполняются.

ТЕРМИНОЛОГИЯ И СТАНДАРТЫ

Для начала приведем несколько терминов и определений.
Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение обычно не находящихся под напряжением частей электроустановки с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока или с глухозаземленным выводом источника однофазного тока.

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).
Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), соприкасающихся с землей.

ГОСТ Р 50571.2-94 предусматривает в числе прочих следующие типы систем заземления электрических сетей зданий: TN-S, TN-C, TN-C-S.
Именно эти системы применяются в рассматриваемом случае. Первая буква Т обозначает непосредственное присоединение одной точки токоведущих частей источника питания к земле, вторая буква означает характер заземления открытых проводящих частей электроустановки (Т - непосредственная связь открытых проводящих частей с землей, независимо от характера связи источника питания с землей; N - непосредственная связь открытых проводящих частей с точкой заземления источника питания, в системах переменного тока обычно заземляется нейтраль). Последующие буквы - устройство нулевого рабочего и нулевого защитного проводников: S - функции нулевого защитного и нулевого рабочего проводников обеспечиваются раздельными проводниками; С - функции нулевого защитного и нулевого рабочего проводников объединены в одном проводнике. Графические символы, используемые в приведенных обозначениях типов систем заземления и на рисунках приведены в Таблице 1.
Условные графические обозначения проводников

Таблица 1. Условные графические обозначения проводников.




Требования к системам заземления изложены в следующих стандартах и нормативных документах:

    *
      Правила устройства электроустановок (ПУЭ) - раздел 1.7;
    *
      ГОСТ 12.1.030-81 ССБТ. Электробезопасность. Защитное заземление, зануление;
    *
      ГОСТ 464-79. Заземления для стационарных установок проводной связи, радиорелейных станций, радиотрансляционных узлов проводного вещания и антенн систем коллективного приема телевидения. Нормы сопротивления;
    *
      ГОСТ Р 50571.10-96 (МЭК 364-5-54-80). Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники;
    *
      ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96). Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Раздел 548. Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации;
    *
      ГОСТ Р 50571.22-2000 (МЭК 60364-7-707-84). Электроустановки зданий. Часть 7. Требования к специальным электроустановкам. Раздел 707. Заземление оборудования обработки информации.

ОШИБКИ ЗАЗЕМЛЕНИЯ

Наличие замкнутых контуров и связей между системами заземления различного назначения может приводить к возникновению межсистемных помех заземления, причем они не устраняются установкой источников бесперебойного питания и других устройств кондиционирования (улучшения) мощности без гальванической развязки. В ряде случаев создается отдельная система заземления, например для учрежденческой цифровой телефонной станции, как того требует ГОСТ 464-79, где предусматривается организация отдельной системы заземления для средств телекоммуникаций.
Контур заземления

Рисунок 1. Контур заземления.






Однако при формальном подходе к ее реализации не обращается внимания на то, что стандарт предусматривает наличие отдельной системы заземления для полюса системы питания постоянного тока. Питание оборудования от общей сети переменного тока с глухозаземленной нейтралью и выполнение, казалось бы, обособленного заземления как раз и приводят к случаю, когда образуются контуры заземления, что становится причиной неустойчивой работы оборудования. Контур заземления - в отличие от так же называемого на жаргоне специалистов контурного заземления (способ соединения горизонтальных заземлителей в земле не следует путать с заземляющими проводниками) - является нежелательным и образуется при наличии связи между двумя заземлителями (см. Рисунок 1).
В образовавшемся контуре (заземлитель №1 - электрическая связь (проводник) - заземлитель №2 - среда (земля)) могут наводиться токи от внешних электромагнитных полей или протекать "блуждающие" токи сторонних нагрузок. Все это приводит к электромагнитным помехам в работе оборудования. Локальные вычислительные и телекоммуникационные сети зачастую имеют в своем составе оборудование связи (антенны, модемы и проч.) и подвержены влиянию помех, в том числе от разрядов молний, т. е. для них важна высокая помехозащищенность. Именно поэтому устранению контуров следует уделять внимание при проектировании и эксплуатации электроустановок зданий.
На практике встречается ошибочное заземление на обособленный заземлитель, не связанный с нейтралью трансформатора (см. Рисунок 2). Подобная схема заземления нарушает требование п.1.7.39 ПУЭ: "В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается..." Требование вызвано тем, что обеспечить электробезопасность в случае рассматриваемой схемы невозможно. На Рисунке 2 показан вынос потенциала при коротком замыкании на корпус электроприемника, заземленного на обособленный заземлитель.
Появление потенциала на корпусе обуславливается падением напряжения в фазном проводнике до точки короткого заземления и падением напряжения в сопротивлении заземлителя №2, в среде (в земле и конструкциях) и в сопротивлении заземлителя №1. Сопротивление цепи короткого замыкания при этом выше сопротивления цепи "фаза-ноль", с учетом параметров которого выбирается защитный автомат, и короткое замыкание, скорее всего, не будет отключено действием максимальной токовой защиты. При этом на корпус выносится потенциал, близкий к фазному напряжению, что создает угрозу для жизни людей. Отключение короткого замыкания произойдет за счет действия тепловой защиты автоматического выключателя, но время отключения КЗ при этом превысит нормируемые значения, составляющие для напряжения U0 = 220 В, - 0,4 с и для U0 = 380 В, - 0,2 с.
Таким образом, неправильно выполненное заземление приводит к образованию нежелательных контуров, вызывает электромагнитные помехи в работе оборудования и опасно для находящихся рядом людей.

ГЛАВНЫЙ ЗАЗЕМЛЯЮЩИЙ ЗАЖИМ

Для сведения к минимуму электромагнитных помех и обеспечения электробезопасности заземление следует выполнять с минимальным количеством замкнутых контуров. Обеспечение этого условия возможно при выполнении так называемого главного заземляющего зажима (ГЗЗ), или шины. Главный заземляющий зажим должен быть расположен как можно ближе к входным кабелям питания и связи и соединен с заземлителем (заземлителями) проводником наименьшей длины.
Такое расположение ГЗЗ обеспечивает наилучшее выравнивание потенциалов и ограничивает наведенное напряжение от индустриальных помех, грозовых и коммутационных перенапряжений, приходящее извне по экранам кабелей связи, броне силовых кабелей, трубопроводам и антенным вводам. К ГЗЗ (шине) должны быть присоединены:

    *
      заземляющие проводники;
    *
      защитные проводники;
    *
      проводники главной системы уравнивания потенциалов;
    *
      проводники рабочего заземления (если оно необходимо).

С главным заземляющим зажимом (шиной) должны быть соединены заземлители защитного и рабочего (технологического, логического и т. п.) заземления, заземлители молниезащиты и др. Подробно правила и требования устройства ГЗЗ изложены в ПУЭ.

СИСТЕМЫ ЗАЗЕМЛЕНИЯ

Системы заземления различаются по схемам соединения и числу нулевых рабочих и защитных проводников.
К системе TN-C (см. Рисунок 3) относятся трехфазные четырехпроводные (три фазных проводника и PEN-проводник, совмещающий функции нулевого рабочего и нулевого защитного проводника) и однофазные двухпроводные (фазный проводник и нулевой рабочий проводник) сети существующих зданий старой постройки.
Система tn-c (нулевой рабочий и нулевой защитный проводники объединены по всей сети)
Рисунок 3. Система TN-C (нулевой рабочий и нулевой защитный проводники объединены по всей сети).




Отсутствие специального нулевого защитного (заземляющего) проводника в существующих электропроводках однофазных сетей создает опасность поражения персонала электрическим током. В ряде случаев технические средства информатики и телекоммуникаций устанавливаются в помещениях, где отсутствует заземление и одновременно имеется нетокопроводящее покрытие пола, на котором накапливается статическое электричество. Из-за отсутствия заземления и возникновения разрядов статического электричества в результате прикосновения к клавиатуре или корпусу персонального компьютера происходят сбои, например "зависания", и даже повреждения оборудования, нарушения в работе программного обеспечения и потеря информации.
Подключение современной компьютерной техники к розеткам электрической сети TN-C сопряжено с таким явлением, как вынос напряжения на корпус, поскольку импульсные блоки питания имеют на входе симметричный L-C-фильтр, средняя точка которого присоединена на корпус. При занулении (заземлении) компьютера происходит технологическая утечка через фильтр, что необходимо учитывать в случае применения устройства защитного отключения (УЗО). При отсутствии проводника РЕ напряжение 220 В делится на "плечах" фильтра, и на корпусе оказывается напряжение 110 В.
В настоящее время требования нормативной документации не допускают применение системы TN-C на вновь строящихся и реконструируемых объектах. При эксплуатации системы TN-C в здании старой постройки, где планируется размещение средств информатики и телекоммуникаций, следует организовать переход от системы TN-C к системе TN-S (система TN-C-S).
Система TN-C-S характерна для реконструируемых сетей, в которых нулевой рабочий и защитный проводники объединены только в части схемы. Система TN-C-S показана на Рисунке 4.
Система tn-c-s (в части сети нулевой рабочий и нулевой защитный проводники объединены)

Рисунок 4. Система TN-C-S (в части сети нулевой рабочий и нулевой защитный проводники объединены).




При переходе от системы TN-C к системе TN-S следует соблюсти последовательность расположения систем относительно источника питания так, как это показано на Рисунке 4. В противном случае обратные токи электроприемников системы TN-C будут замыкаться по защитным проводникам РЕ системы TN-C-S и вызывать помехи. Если одна из частей электроустановки здания - трансформатор, дизель-генератор, источник бесперебойного питания (ИБП) или иное подобное устройство - имеет систему заземления типа TN-C и используется главным образом для питания оборудования инфокоммуникационных технологий, то выходом из ситуации должен быть переход на систему типа TN-S.
Система tn-s (нулевой рабочий и нулевой защитный проводники проложены раздельно по всей сети)

Рисунок 5. Система TN-S (нулевой рабочий и нулевой защитный проводники проложены раздельно по всей сети).



Система TN-S (см. Рисунок 5) является основной рабочей системой заземления для зданий с информационным и телекоммуникационным оборудованием. В системе TN-S нулевой рабочий и нулевой защитный проводники проложены отдельно от источника питания. Такая схема обеспечивает отсутствие обратных токов в проводнике РЕ, что снижает риск возникновения электромагнитных помех. При эксплуатации необходимо следить за соблюдением назначения проводников PE и N. С точки зрения минимизации помех оптимальным считается наличие встроенной (пристроенной) трансформаторной подстанции (ТП). Подобным образом достигается минимальная длина перемычки от ввода кабелей электроснабжения до главного заземляющего зажима.
Соблюдение указанного требования справедливо и для системы TN-C-S. И в этом случае речь идет о расстоянии между вводом от системы электроснабжения и главным заземляющим зажимом. Для системы TN-C-S желательно выполнение повторного заземления нейтрали. Система TN-S при наличии встроенной (пристроенной) подстанции не требует повторного заземления, так как имеется основной заземлитель на ТП.

ЗАЗЕМЛЯЮЩИЕ ПРОВОДНИКИ

Распространяясь непосредственно по электрической сети при протекании тока, кондуктивные помехи проникают в систему бесперебойного электроснабжения (СБЭ) из питающей сети общего назначения, и их подавление у электроприемников группы А до определяемого требованиями ГОСТ 13109-97 приемлемого уровня достигается путем организации электроснабжения потребителей по выделенной сети и применения ИБП активного типа для защиты оборудования от поступающих из сети помех. Выделенной сетью называется электрическая сеть, предназначенная для питания группы электроприемников, объединенных по признаку функционального назначения или общими требованиями к качеству электроэнергии и надежности электроснабжения. Важной составляющей выделенной электрической сети является сеть заземляющих проводников.
Для зданий, где установлено или может быть установлено большое количество различного оборудования обработки информации или другого чувствительного к действию помех оборудования, необходим особый контроль за использованием отдельных защитных проводников (проводников PE) и нулевых рабочих проводников (проводников N) после точки подвода питания, чтобы предотвратить или свести к минимуму электромагнитные воздействия. Указанные проводники нельзя объединять, в противном случае ток нагрузки, особенно возникающий при однофазном коротком замыкании сверхток, будет проходить не только по нулевому рабочему проводнику, но и частично по защитному, что может привести к помехам.
Рабочие станции компьютерной сети должны иметь схему заземляющей сети по типу одноточечной "звезды". Из-за большого количества связей реализовать ее трудно, поэтому применяется гибридная схема: заземляющие проводники прокладываются совместно по одной трассе с линиями электроснабжения (см. Рисунок 6). На участке от вводно-распределительного устройства или главного распределительного щита, где расположен главный заземляющий зажим (шина), до щитков на этажах здания схема является одноточечной "звездой" (параллельной одноточечной), а на участке групповых сетей, от щитка до электрической розетки, - последовательной одноточечной.
Заземляющее устройство здания

Рисунок 6. Заземляющее устройство здания.



Все заземляющие проводники прокладываются изолированными проводами и кабелями. В электрических щитах шины и клеммники РЕ для потребителей компьютерной сети размещаются изолированно от корпусов. Линии РЕ для заземления корпусов, коробов, лотков и прочего электротехнического оборудования и конструкций прокладываются отдельными проводами и кабелями от одного и того же главного заземляющего зажима.
Сосредоточенные зоны размещения телекоммуникационного и информационного оборудования могут иметь ту же схему, что и рабочие станции, или одноточечную при размещении оборудования в машинных залах (см. Рисунок 6) - потенциаловыравнивающая сетка. Магистральный проводник от главного заземляющего зажима (шины) также прокладывается совместно с магистральными линиями электроснабжения. Заземление технологического оборудования следует выполнять в соответствии с требованиями технической документации. При этом корпуса (открытые проводящие части) оборудования должны соединяться с главным заземляющим зажимом и со сторонними проводящими частями, выполняющими роль системы уравнивания потенциалов.

ЗАЗЕМЛЯЮЩЕЕ УСТРОЙСТВО

Совокупность заземлителя и заземляющих проводников называется заземляющим устройством (см. Рисунок 6). В учреждении, где размещается информационное, телекоммуникационное оборудование и средства связи, оно должно быть защитным и соответствовать требованиям электробезопасности, описанным в ГОСТ 12.1.030, ПУЭ и стандартах ГОСТ Р 50571 (МЭК 364) "Электроустановки зданий". Какие-либо другие требования к заземляющему устройству не предъявляются.
Сопротивление заземляющего устройства должно соответствовать ПУЭ (см. раздел 1.7). Если оно имеет допустимое значение в здании, уменьшение сопротивления не влияет на устойчивость функционирования оборудования, и дополнительные требования к сопротивлению заземлителей не предъявляются.
В здании может быть один, два или несколько заземлителей, но когда при одном заземлителе сопротивление заземляющего устройства удовлетворяет требованиям ПУЭ, то увеличение числа заземлителей не оказывает влияния на электробезопасность и устойчивую работу оборудования. Заземлитель (заземлители) рекомендуется располагать внутри охраняемой территории, что является одним из условий по обеспечению защиты информации.
В ряде случаев предъявляется требование по созданию отдельного функционального (технологического, логического и т. д.) заземлителя, не связанного с заземлителями защитного заземления, с целью защиты информации и предотвращения несанкционированного доступа к ней по цепям питания и заземляющим проводникам.
Если по технологическим требованиям (условиям защиты информации от несанкционированного доступа, обработки конфиденциальной информации и т. п.) заземлитель функционального (технологического и т. д.) заземления требуется отделить от системы защитного заземления (зануления), то магистральные нулевые защитные проводники и заземлитель функционального (технологического и т. д.) заземления следует присоединять к отдельному заземляющему зажиму, изолированному от металлоконструкций и от электрооборудования. Для обеспечения электробезопасности и защиты информации следует применять:

    *
      изолирующий трансформатор;
    *
      ИБП с двойным преобразованием частоты и изолирующим трансформатором;
    *
      фильтры (трансфильтры, суперфильтры) с изолирующим трансформатором.

Основным условием применения этого обрудования является отсутствие кондуктивной связи с первичной стороной как по PE, так и по N. Соответственно, режим работы ИБП на байпасе не должен нарушать названное условие, что достижимо при установке изолирующего трансформатора в цепи байпаса.
Заземлитель функционального (технологического и т. д.) заземления должен располагаться в охраняемой (контролируемой) зоне во избежание несанкционированного доступа к нему.

ЭЛЕКТРИЧЕСКИЕ РОЗЕТКИ

В заключение необходимо упомянуть об электрических розетках, поскольку именно они обеспечивают надежное соединение заземляющих проводников с оборудованием. При непосредственном заземлении монтаж осуществляется под предусмотренную конструкцией оборудования гайку (зажим, бонку). При включении в розетку заземление выполняется через контактные разъемные соединения электрической розетки и питающего трехпроводного кабеля.
Электророзетки

Рисунок 7. Электророзетки "европейского" типа: слева a) Е10-G: CEE 7 Shuko, справа б) E10-F: French/Belgian.



Рынок предлагает достаточно большое количество типов электрических розеток. В настоящее время в России широко используются розетки европейского типа (так называемые "евророзетки"). Согласно системе нормативных обозначений, принятых в европейских странах, они обозначаются как Е10-G: CEE 7 Shuko. Литера G означает германский типоразмер. Розетки более редко используемого франко-бельгийского типоразмера E10-F: French/Belgian отличаются положением и формой третьего заземляющего контакта. У Е10-G: CEE 7 Shuko заземляющий контакт имеет форму двух ламелей, расположенных на окружности розетки (см. Рисунок 7а), а заземляющий контакт розетки E10-F: French/Belgian выполнен в виде штыря, выступающего над ее штепсельными разъемами (см. Рисунок 7б). Большинство электрических вилок кабелей питания инфокоммуникационного оборудования можно включать в оба типа розеток, однако бывают и исключения. При выборе электроустановочных изделий следует ориентироваться на розетки германского типа Е10-G: CEE 7 Shuko.
"Евророзетки" отличаются от тех, что ранее выпускались в СССР, диаметром гнезда штепсельного разъема. У первых диаметр составляет 4,8 мм, а у вторых - 4 мм. По этой причине современные вилки со штырями 4,8 мм не подходят к старым розеткам. Кроме того, отсутствие в них заземления не допускает эксплуатацию в соответствии с новыми требованиями электробезопасности.

Просмотров: 3456 | Добавил: UN3F | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск

Следующий ТЕСТ
УКВ Рейтинг по Павлодарской обл 2013г
УКВ Рейтинг по Павлодарской обл 2014г
УКВ Рейтинг по Павлодарской обл 2015г
УКВ Рейтинг по Павлодарской обл 2016г
УКВ Рейтинг по Павлодарской обл 2017г
УКВ Рейтинг по Павлодарской обл 2018г
УКВ Рейтинг по Павлодарской обл 2019г
УКВ Рейтинг по Павлодарской обл 2020г
УКВ Рейтинг по Павлодарской обл 2021г
УКВ Рейтинг по Павлодарской обл 2022г
УКВ Рейтинг по Павлодарской обл 2023г

Радио начинающим

Последние на форуме
  • Дипломы Тульской области (2)
  • В память о друге (2)
  • Kulikovo Polye contest (2)
  • Изучаем CW (0)
  • Радиолюбительский компьютер (6)
  • Помощь в приобретении товаров (5)
  • Портативная КВ-антенна на несколько диапазонов (3)
  • Специальная станция (7)

  • Последние комментарии
    Кто то выполнил диплом?

    Сегодня последний день работы по данной программе, станций много, отли

    С Рождеством Христовым и Новым Годом! Успехов и здоровья всем , хороши


    Последние объявления
    Объявления радиолюбителей
    10.05.2022
    транзисторы
    (0)
    Объявления радиолюбителей
    19.05.2021
    Куплю трансивер кв.
    (0)
    Объявления радиолюбителей
    21.06.2020
    продам рации
    (0)
    Объявления радиолюбителей
    21.06.2020
    Продам радиостанции KENWOOD TK 5118
    (0)
    Объявления радиолюбителей
    13.02.2020
    Куплю
    (0)

    Последние статьи
    Статьи 12.02.2021
    Делаем измеритель нпряженности поля (1)
    Статьи 22.02.2020
    Понравилось, отражает действительность на форумах: (0)
    Статьи 16.06.2019
    Ручной антенный тюнер большой мощности MFJ – 962 (0)
    Статьи 27.05.2019
    ICOM-756 (1)
    Статьи 15.05.2018
    Выезд в поле на УКВ соревнования от UN8PP (0)

    Последние Файлы
    Файлы HAMs12.08.2018
    Электроника для любознательных (+files) (2018) (0)
    Файлы HAMs12.08.2018
    Основы программно-конфигурируемого радио (2015) (0)
    Файлы HAMs17.10.2017
    Учебник по войсковой радиотехнике. (0)
    Файлы HAMs28.01.2016
    Правила эксплуатации радиоэлектронных средств радиолюбительских служб (0)
    Файлы HAMs31.07.2015
    Андрей Кашкаров - Радиомастеру-умельцу. Оригинальные конструкции импульсных источников питания и не только (0)


    Диплом UN-WPR

    Диплом UN-WPR Гусиный перелет UN-WPR

    Проверь, выполнены ли
    условия диплома: "Работал с Павлодарской областью" - UN-WPR, "Гусиный перелет"

    Заполни заявку на
    Диплом UN-WPR

    HAMs Ресурсы KZ
    QRZ.kz CQUN.kz AARU UN7D

    Сайт радиолюбителей Павлодарской области


    HAMs Ресурсы - Журналы
    Журнал HamLog Журнал LOTW Журнал EQSL Журнал ClubLog


    Copyright UCOZ © 2024
    zhenya111(23)
    Онлайн всего: 21
    Гостей: 21
    Пользователей: 0
    QRZ.RU - новости
    ФОРУМ QRZ.RU



    DXFUN



    CONTEST CALENDAR

    Ads QRZRU

    ALL NEWS CQHAM.RU Website CQHAM.RU
    DX INFO
    ОО "ФРПО"
    Если есть информация или предложения, напиши в ОО "Федерация радиоспорта Павлодарской области"


    Следующий УКВ Тест, Дни активности

    Открытый УКВ Тест

    7 мая 2024г. с 11:00 до 12:00 время Астаны ,
    4 тура по 15 минут, все УКВ диапазоны,
    участники - все, во всех областях и странах,
    диапазоны 144, 430 и выше


    Положение здесь




    RADIO ONLINE





    Проверить QSO c UP70F; UP30F
    Clublog

    В верхней графе UP70F, а в нижней графе указываете свой позывной. Жмите нопку Искать и получите данные о своих связях или их отсутствии. Все вопросы можете писать на майл un9fww(at)mail.ru



    DX-Engineering
    AmateurRadioCom
    ItsHamRadio
    Amsat